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Eyecatch: Simulating Visuomotor Coordination for Object Interception

Sang Hoon Yeo Martin Lesmana Debanga R. Neog Dinesh K. Pai

Sensorimotor Systems Laboratory, University of British Columbia∗

Figure 1: Catching a thrown ball. The movement depends on visual estimates of the ball’s motion, which trigger shared motor programs
for eye, head, arm, and torso movement. The gaze sets the goal for the hand. Initially the movements are reactive, but as visual estimates
improve predictive movements are generated to the final catching position.

Abstract

We present a novel framework for animating human characters per-
forming fast visually guided tasks, such as catching a ball. The
main idea is to consider the coordinated dynamics of sensing and
movement. Based on experimental evidence about such behaviors,
we propose a generative model that constructs interception behavior
online, using discrete submovements directed by uncertain visual
estimates of target movement. An important aspect of this frame-
work is that eye movements are included as well, and play a central
role in coordinating movements of the head, hand, and body. We
show that this framework efficiently generates plausible movements
and generalizes well to novel scenarios.
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1 Introduction

Fast interception movements, such as catching thrown balls, are im-
portant in computer animation, especially of sports. At first glance
these appear to be straightforward problems: the trajectory of the
ball is a simple parabola, and once a point of interception is picked,

∗{shyeo,martinle,debanga,pai}@cs.ubc.ca

the character’s hand could be moved to the point of interception us-
ing a variety of animation techniques. Such an animation, however,
will appear very unrealistic and robotic because it ignores several
crucial features of real human movement. In this paper, we pro-
pose a generative model of such movements that takes into account
these features and measurements of human catching behavior. By
emphasizing the role of gaze as a prime coordinator of the motion,
the model can efficiently generate realistic interceptive movements
without requiring too many ad hoc assumptions.

How humans catch. To understand how normal, untrained peo-
ple actually perform interception tasks, it is helpful to look at some
data. We measured catching behavior of an untrained subject, si-
multaneously measuring the motion of the ball, hand, head, and
body using a motion capture system, and eye movements using a
head mounted eye tracker. See Fig. 2; details of the measurement
system are given in Sec. 5.

First, the ball trajectory may be simple but is not known to the hu-
man catcher who has to quickly estimate it, primarily using vision.
This immediately suggests that eye and head movements that en-
able clear vision of the moving ball are an important part of real
catching behavior. This can be seen even by informal observation
and in Fig. 2(a). This is why we pay special attention to eye move-
ments, and not just to body movements as is the usual practice in
full body animation (i.e., other than in face animation). Two types
of eye movements are observed (see Fig. 3). (1) smooth pursuit eye
movements which attempt to continuously track the ball, especially
prominent after the ball has passed the apex of its trajectory. (2)
catch-up saccades, which are very fast movements, especially at
the beginning when the quality of pursuit is not good.

Second, it is not uncommon for the flight duration to be very short,
about a second, and human vision is relatively slow, so there is
very little time to obtain an accurate estimate and plan the catch be-
fore moving the hand. Instead the hand begins to move very early,
when only a crude estimate is known, and appears to have an initial
“open loop” phase, followed by a “closed loop” or “homing” phase.
This was observed a century ago by Woodworth [1899], who pro-
posed this “two component” model. Thus hand movements are not
straight, preplanned trajectories, but are curved, with a stereotyp-
ical initial phase, followed by individual corrections to the target.
See Fig. 2(b).
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Third, much experimental evidence suggests that human move-
ments are not planned in their entirety but generated by blending
together discrete, short-duration submovements. Some of the evi-
dence for and against this discrete submovement hypothesis is re-
viewed in Sec. 2. The example data shown in Figs. 2(b) and 6
show that real hand trajectories appear to have discontinuous higher
derivatives, consistent with the hypothesis. This hypothesis is par-
ticularly appealing for computer animation, as we can leverage
standard tools for constructing smooth curves from basis functions.

Finally, somewhat surprisingly, we observed close synchronization
between the submovements detected in the hand movements and
catch-up saccades of the eyes. This phenomenon can be seen in
Fig. 4 and consistently in other trials. Saccades and the peak hand
velocity appear to be very well synchronized. Furthermore, if we
decompose the hand velocity profile into submovements, we find
that the start times of the submovements are also well synchronized
to saccades. We can also qualitatively observe from decomposi-
tion results in Fig. 6 that the three dimensional hand trajectory is
well represented by piecewise linear segments that correspond to
the submovement directions.
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Figure 2: Captured catching behavior: (a) Temporal change of the
upper body configuration. (b) Captured hand trajectories for eleven
trials (red) and corresponding ball trajectories (gray).

Figure 3: Eye movements for three different ball trajectories, as
seen in a reference frame fixed at the initial position of the eye. The
ball (gray) goes upward initially and then downward after passing
the apex (green circle); note that due to perspective projection, the
true apex differs from that of the projected trajectory. Gaze position
(red) are captured every 10 ms (dots).

This analysis suggests an appealing hypothesis about movement
generation, at least for visually guided interceptive movements: the
eye and hand share the same motor program that is triggered by sen-
sory events. Analogous hypotheses have been proposed by others,
in slightly different contexts, e.g., [Starkes et al. 2002; Johansson
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Figure 4: Tangential velocity of captured hand (green) and eye
movements (red). Red arrows are observed saccades of which the
estimated trigger times are drawn as dotted lines. Gray curves
shows the decomposed submovements.

et al. 2001; Hayhoe and Ballard 2005]. This primacy of gaze in
locomotion is neatly summarized by Berthoz [2000] in the phrase:
“ ‘Go where I’m looking’, not ‘Look where I’m going.’ ” It also
underlies the coach’s admonition to “keep your eyes on the ball”
to improve performance. This hypothesis deserves more detailed
study in the movement sciences, presumably using a minimalistic
highly controlled experiment design, as in the work cited above, but
that is not our goal here. Rather, our goal is to show that we can ex-
ploit it to efficiently generate realistic animations of goal directed
behavior of a complex 3D character for computer graphics.

Contributions. We propose a new generative model for simu-
lating a large class of fast interceptive movements. The model is
grounded in experimental observations of human behavior, both in
our lab and reported in the literature. A key feature of the model is
that it is based on simultaneous measurements of eye movements
along with traditional motion capture of hand and body move-
ments; this has not been previously seen in computer animation,
to the best of our knowledge. We combine a model of active vision
with a model of movement generation using short duration discrete
submovements, based on experimental observations. More impor-
tantly, we propose that submovements of the eyes, head, hand,
and body are tightly synchronized, which provides an exception-
ally convenient way to produce natural looking coordination. To
our knowledge this is also new in computer animation. Several
other known features of human catching behavior are included in
the model as well. Even though the model captures significant fea-
tures of real human behavior, several tradeoffs were made to make
the simulation very efficient and practical, taking only a few sec-
onds to generate realistic catching behavior. Since it is not based
on raw motion capture data but on the underlying principles, the
model generalizes very well to novel scenarios, such as catching
with poor visibility and sudden changes in trajectory.

The paper is organized as follows. We first briefly review related
work in Sec. 2. Sec. 3 introduces a practical model for visual esti-
mation of target movement based on plausible statistics of human
vision. Sec. 4 first shows how movements are composed of sub-
movements. It then describes how gaze movements are first gener-
ated (Sec. 4.1), followed by synchronized movements of the head
(Sec. 4.2), the hand (Sec. 4.3), and the body (Sec. 4.4). Sec. 5 and
the video show the results. Sec. 6 concludes with a discussion of
the limitations and benefits of our approach.

2 Related Work

Due to its importance, object interception and its related topics have
been investigated not only in computer graphics, but also in neuro-
science and robotics. We briefly review the most relevant work
here.
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Computer Graphics.
There have been very few papers written specifically on the topic
of interception movements. Gillies and Dodgson [1999] proposed
a method to solve the classical “baseball outfielder problem” of
how to run to catch a ball, but no implementation results were re-
ported. More recently, several character animation papers included
object interception as an example [Francik and Szarowicz 2005;
Abe and Popović 2006; Cooper et al. 2007], but did not consider
gaze. Papers on object manipulation have either not included gaze
(e.g., [Pollard and Zordan 2005; Liu 2009]) or included gaze as a
post-process for realism (e.g, [Tsang et al. 2005; Yamane et al.
2004]).

Gaze has been an important part of virtual characters [Lee et al.
2002; Itti 2003; Pelachaud and Bilvi 2003; Garau et al. 2003; Ya-
mane et al. 2004; Gu and Badler 2006; Peters and Qureshi 2010],
and crowd simulation [Shao and Terzopoulos 2005; Grillon and
Thalmann 2009]. Perhaps the closest to our view of coupling per-
ception and movement are the seminal papers by Terzopoulos and
co-workers (e.g., [Tu and Terzopoulos 1994; Terzopoulos and Ra-
bie 1997; Lee and Terzopoulos 2006]).

Movement Neuroscience.
Visuomotor coordination and object interception have been exten-
sively studied in the movement sciences. A recent review by Zago
et al. [2009] provides an excellent overview of this area. Other rel-
evant works are cited in context throughout the rest of the paper.
Even though some one dimensional models have been proposed
(e.g., [Dessing et al. 2005]), much of this work is descriptive and
can not be directly used for 3D character animation.

Submovements. A long standing hypothesis is that human (and an-
imal) movement is not generated continuously, but produced by
combining discrete building blocks, called submovements. There
has been considerable experimental support for this hypothesis,
starting from the seminal work of Soechting and Terzuolo [1987]
and Vallbo and Wessberg [1993]. Although there are criti-
cisms [Sternad and Schaal 1999] that this may not apply to rhythmic
movements, the concept of submovements continues to have wide
support and is used in recent analyses on hand movement [Novak
et al. 2002] and clinical treatment after stroke [Dipietro et al. 2009].

Robotics.
Several impressive visuomotor control models for catching have
been proposed in robotics [Hove and Slotine 1991; Riley and Atke-
son 2002; Bauml et al. 2011; Birbach et al. 2011]. Since their main
goal is to generate robust high performance catching, the proposed
models are optimized for the robot system itself, rather than for
producing human-like movement.

3 Visual Estimation of Target Movement

Human vision is remarkably complex and the subject of intense
ongoing study. For computer animation we need a relatively simple
model that captures the relevant features of human vision, but by no
means all the complexities. It is commonly hypothesized that the
brain is able to use the internal models of object dynamics [Wolpert
et al. 1995] to estimate and predict the object’s state over time. We
use a Kalman filter for predicting the state of ball, using plausible
models of noise introduced by visual sensing.

Fig. 5 defines a spatial coordinate frame attached to the eye, with
its origin at the center of the globe, X-axis aligned with the visual
axis, and Z-axis vertical in a reference position looking straight
ahead. For ball catching, we define the perceived position and ve-
locity of the ball as a six dimensional state vector in the eye coordi-
nate frame, x = (

p
ṗ ).

E

q
p

d

u

O

Y

X
Z

Figure 5: Eye coordinate frame and the corresponding uncertainty
of an object. Uncertainty is represented as a multivariate normal
distribution. The error covariance ellipsoid around the true object
location p is calculated by its deviation θ from the gaze direction
(X-axis) and the axis of rotation ω.

Table 1: Parameters for error standard deviations of foveal vision:
units for last three rows are identical to their original unit

Parameter Value
Retinal Position σqz , σqy 2.9× 10−4 rad
Retinal Velocity σq̇z , σq̇y 0.05|q̇|

Depth σx 0.03d

Depth Velocity σẋ 0.5|ḋ|d

3.1 Vision

We approximate the probability of the state of a moving point seen
by the eye as a multivariate normal distribution in the eye coordinate
frame. As shown in Fig. 5, the probability of the perceived position
p and velocity ṗ of the target in the eye-fixed frame is:[

p
ṗ

]
= N

([
p̄
˙̄p

]
, AΣ2AT

)
(1)

Σ =
1

α(θ)
diag([σx, σy, σz, σẋ, σẏ, σż]), (2)

A =

[
e[ω]θ O3×3

O3×3 e[ω]θ

]
, (3)

where p̄ and ˙̄p are the true position and the velocity of the ball in
3 dimensional space, Σ is the error covariance matrix in eye frame
and A the corresponding transformation matrix from the target to
the eye center. The block diagonal elements of A represent the
rotation needed for the eye to foveate the target and [ω] is a skew
symmetric matrix of the axis of this rotation.

The noise parameters in Eq. 2 are chosen as follows and are sum-
marized in Table 1. The location of a point on the retina is repre-
sented using spherical coordinates, sequential rotation around Z and
Y axes of the eye frame, called retinal coordinates: q = (qz, qy)T .
We set the standard deviations σqz and σqy to correspond to the
spatial resolution of standard 20/20 vision. Using the small angle
approximation, we can convert the error from retinal to eye coordi-
nates: (σz, σy)T = d(σqz , σqy )T , where d is the distance from eye
to the object.

The ability to discriminate the difference in retinal velocity is
roughly proportional to the actual retinal velocity. The Weber frac-
tion of velocity detection is known to be around 5% [McKee 1981].
Therefore, if the probability of perceived velocity is also assumed
to be normally distributed over its true velocity, the standard devi-
ation of the error, (σq̇z , σq̇y )T , can be chosen to be proportional to
the actual velocity. Similar to the position error, the velocity error
represented in eye coordinate will be (σż, σẏ)T = d(σq̇z , σq̇y )T .
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Our ability to measure depth or change in depth is known to be
much worse than detecting the retinal location and is perceived us-
ing binocular vision and other cues. Simulating stereo vision is
beyond the scope of this paper; we set the depth resolution, σx and
σẋ, to be much higher and also proportional to the depth to approxi-
mate the vergence angle. Finally, the factor α accounts for the drop
in acuity with distance to fovea, the central region of highest acuity.

3.2 Internal Model and Bayesian State Estimation

Using the vision model described above, a noisy observation of the
target states is obtained. For simulation, we discretize the state up-
date with a time step ∆t = 20 ms.

The internal model of the ball’s dynamics is represented as

xk+1 = Fxk + b, (4)

F =

[
I3×3 I3×3∆t
O3×3 I3×3

]
, b =

[
O3×1

g∆t

]
, (5)

where g is gravity vector, which we assume to be constant. In other
words, we assume that the brain has prior knowledge about gravity
(see, e.g., [McIntyre et al. 2001]).

Using the vision model described above, we can then model the
observer. If Rk is the orientation and rk the position of the eye
frame at time k, the observed position and velocity of the ball zk is:

zk = Hkxk + hk + vk, (6)

where vk is the observation noise defined in Eq. 3 while Hk and
hk are the transformation from the spatial to the eye frame:

Hk =

[
Rk

T O3×3

O3×3 Rk
T

]
, hk =

[
−Rk

T rk
O3×1

]
. (7)

We use a standard Kalman filter to implement the Bayesian infer-
ence with internalized dynamics in the brain. For completeness, the
predict-update filtering algorithm is given below.

• Predict:

xk|k−1 = Fxk−1|k−1 + b (8)

Pk|k−1 = FPk−1|k−1F
T (9)

• Update:

yk = zk −Hkxk|k−1 − hk (10)

Sk = HkPk|k−1Hk
T + AkΣk

2Ak
T (11)

Kk = Pk|k−1Hk
TSk

−1 (12)
xk|k = xk|k−1 + Kkyk (13)
Pk|k = (I−KkHk)Pk|k−1, (14)

where Ak and Σk are previously defined in Eq. 3. Since we as-
sume that the subject initially has no prior knowledge about the
states, the initial value of the prior estimate covariance, P0|0, is
made sufficiently large and x0|0 is chosen to be the zero vector.

The performance of the Kalman filter in object tracking is known
to deteriorate seriously if the tracked object changes its trajectory
suddenly, especially when the error covariance is small, such as the
case when the ball we are tracking bounces unexpectedly. There-
fore, in order to implement human vision’s ability to track an object

with a sudden trajectory change, we should endow an adaptive be-
havior to the filter. This is typically achieved by resetting the prior
error covariance matrix Pk|k−1 to a sufficiently high value when an
abnormal tracking error is recognized. We choose the reset decision
variable as a Mahalanobis measure of the innovation: yk

TSk
−1yk,

which indicates the abnormality of the error between prediction and
observation.

4 Movement Generation

Based on the visually estimated target movement, we can then gen-
erate the gaze movement to the target (Sec. 4.1), followed by syn-
chronized movements of the head (Sec. 4.2), the hand (Sec. 4.3),
and the body (Sec. 4.4).

To make this complex whole body movement tractable, the move-
ments are generated kinematically, rather than using a dynamic
model of human biomechanics. This is an approximation we make
primarily for efficiency, but one that is well supported by human
movement research. Even though dynamic properties of the body
are important for the ultimate control of the movement, the brain ap-
pears to represent external movement goals kinematically at a high
level. This can be seen by the fact that one’s handwriting looks the
same regardless of posture or writing tool used; this phenomenon
was termed “motor equivalence” by Donald Hebb [1949]. Since
then, several kinematic invariants and laws have been proposed
for movement planning, though the topic remains controversial, as
are most topics in neuroscience. The dynamics must influence the
movement at some level, at least in the lower level controllers. We
take this evidence pragmatically to mean that a kinematic approxi-
mation is plausible, and helps to improve the efficiency of the ani-
mation system.

As discussed in Sec. 1 we assume that movements are produced by
blending short duration submovements together. Each submove-
ment is smooth, with a bell-shaped velocity1 profile. Different
smooth shapes have been proposed, including those that minimize
jerk (time derivative of acceleration) [Flash and Hogan 1985] and
the more flexible delta lognormal shape [Plamondon 1995]. We
chose the minimum jerk profile for simplicity, as it has fewer pa-
rameters. The tangential velocity v(t0, tf , t) with unit displace-
ment is defined in a time interval t0 < t < tf as:

v(t0, tf , t) =
30

(tf − t0)5
(t− t0)2(t− tf )2. (15)

The velocity of a movement u̇(t) is represented as a superposition
of submovement velocity profiles u̇i:

u̇(t) =

n∑
i=1

u̇i(t) =

n∑
i=1

bi v(t0i , t
f
i , t), (16)

where bi is the basis vector representing the direction and magni-
tude of the submovement. Very fast movements, such as saccades,
can consist of single submovement, and slower movements of head
and hand can consist of multiple submovements. Care should be
taken in case of superimposed submovements: when the destination
of the new submovement is given, bi is not the difference between
the destination and current position, but rather, it should be the dif-
ference between the new destination and the previous submovement
destination.

Fig. 6 shows the velocity profile and decomposed submovement of
some measured hand trajectories. Decompositions are done by non-
linear least squares optimization with pre-chosen number of sub-
movements: finding a set of submovement parameters, bi, t

0, tf ,
1More accurately, speed, but we follow the usage in the human move-

ment sciences.
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that minimizes the error between captured and composed trajecto-
ries. Note that this submovement decomposition may not be unique
and several different combination can exist depending on the initial
condition and selection of the basis [Rohrer and Hogan 2003].

Using this framework, animation of body movement, including
head movement and hand movement becomes very clear: for each
update of visual information, corresponding submovements of each
body part is determined and superimposed on the current motion.

4.1 Gaze Movements

Given the estimated ball state, we first determine gaze, that is,
where to look. We define (binocular) gaze as a point in space where
the eyes are looking. This determines the orientations of the eyes
in space. As described earlier, a distinguishing feature of our ap-
proach to animation is that the gaze is determined prior to deter-
mining body movement. In humans and other animals, gaze is not
significantly affected by body movement unless the eyes reach a
biomechanical limit. Indeed, several fast low-level reflexes, includ-
ing the vestibulo-ocular and vestibulo-collic reflexes, stabilize gaze
in space and cancel disturbances due to body movements.

Pursuit generator Limiter

Saccade generatorSampler

++
+
-

200ms

Perceived 
target position

Integrator

Gaze

Internalized dynamics

Ax+b

Position error

Prediction Pursuit velocity

Saccade 
velocity

Figure 7: Overall control structure of gaze

To foveate an object of interest, two types of gaze movements are
used, called saccade and pursuit. The saccade is a very fast, im-
pulsive eye movement (up to 800◦/s in humans) [Leigh and Zee
1999], but the high speed comes at a cost: vision is very poor dur-
ing a saccade. Humans and other primates can use smooth pursuit
eye movements to continuously track moving objects, but only at
relatively low speeds (an order of magnitude slower than saccades).

The properties of saccades and pursuit are well studied [Young and
Stark 1963; Robinson et al. 1986], in particular [Orban de Xivry
and Lefèvre 2007] provide a recent perspective. Our goal here is
not to precisely represent the decision to saccade or pursue, but
rather to have a simple model that captures the statistical regular-
ities observed in the data. The typical time required for two con-
secutive saccades is known to be around 200 ms [Young and Stark
1963; Robinson 1965], corresponding to the 200ms recharge dura-
tion of the saliency map in the model proposed by Itti et al. [2006].
Tracking fast moving objects is challenging, and is likely to require
a rapid sequence of catch-up saccades. As shown in Fig. 4, we
also observe this in our experimental data, with catch-up saccades
triggered at approximately 200 ms interval. Therefore, we assume
200 ms as the visuomotor update time that regulates the general
movement including head and hand movement. The overall block
diagram of the eye movement velocity generator, including saccade
and pursuit, is described in Fig. 7.

The saccade amplitude is determined by current error between gaze
and target angles. Given its amplitude, the likely duration of a sac-
cade can be well estimated from the “main sequence” relationship
[Leigh and Zee 1999]. The velocity of saccade is chosen as in

Eq. 15; real saccades have a more asymmetric velocity profile, but
the difference is imperceptible for computer animation.

Since pursuit is a smooth movement, we set its velocity to be up-
dated at every time step ∆t with v = (p̄ − p)/∆t. Here, p is
the current gaze and p̄ is the position of the target at the next step
as predicted by the internal model. The maximum pursuit velocity
is limited to 100◦/s as per human oculomotor limits [Meyer et al.
1985], restricting it to follow only low speed targets.

When an object is detected, the estimated positions in the early
stages will be very noisy. Therefore, if the saccade is simply trig-
gered to the estimated position, the initial eye movement will be
very inaccurate and unrealistic. The brain avoids this problem by
suppressing the initial saccade until the likelihood of position of the
object exceeds some significance criterion [Carpenter and Williams
1995]. We relate this decision criterion to the innovation observed
by the perceptual system, using the error covariance of innovation
that is defined in Eq. 11: the initial saccade is triggered when the es-
timated error of the object position in the retinal coordinate, which
is the Y-Z coordinate of the eye frame, is reduced below a certain
threshold.

4.2 Head Movements

We assume that the main goal of head movement in target tracking
is to assist the eye in tracking the target more easily. Therefore,
the movement for the head is defined similarly to the gaze: we de-
fine head movement by setting the “head gaze”, a spatial point that
the head is facing. Since the rotation of the head follows Donders’
law [Crawford et al. 2003], which states that three dimensional head
rotation can sufficiently be described by two parameters, the longi-
tudinal rotation followed by latitudinal rotation, the rotation matrix
of the head, Rh, is determined by the head gaze. If the head gaze
is represented with spherical coordinates, [qz, qy], with respect to
the head frame in the home configuration, Rh0, the corresponding
head orientation is R = Rh0Rz(qz)Ry(qy).

It is known that the same brain areas are involved in eye and
head movement in both saccades [Freedman et al. 1996] and pur-
suit [Lanman et al. 1978]. Therefore, we assume that the head also
generates saccades and pursuit in the same way as the eye, whereas
the head saccade is a slower, longer lasting bell shaped velocity
profile compared to the eye. Given a gaze shift, the corresponding
saccade amplitude of the head is linearly related with a 20◦ dead
zone [Leigh and Zee 1999]. There is a more sophisticated model
proposed by Freedman [2001] for the kinematic relationship be-
tween the head and eye movement, but this model is not directly
applicable to 3-dimensional, large angle movements since it is fo-
cused on horizontal movements with a limited range.

Once the change of head gaze is determined, the peak velocity is
also determined by its well known linear relationship to the am-
plitude [Leigh and Zee 1999], with slope varying between 4s−1

to 8s−1. If we apply this relationship to the submovement shape
function in Eq. 15, we get a constant submovment duration around
400 ms. Taken together, we can define the submovement parame-
ters in Eq. 16 for saccade velocity of the head gaze, ġ:

ξ = max(0, θ − 0.349) (17)

bi = (e[ωi]ξ − I)(gi−1 − p) (18)

where [ωi, θi] is the axis-angle representation of the displacement
from the last head gaze destination gi−1 to the current eye gaze
destination with respect to the current head position p, and ξ is
the required angular displacement of the head saccade. Here θ is
the non-negative magnitude of the rotation, with the sign of the
rotation absorbed in ω. Note that this definition will not generate
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Figure 6: Decomposed submovement of hand trajectory: [Top row] Real (green) and synthesized (orange) submovements shown in three
dimensional space. Dotted lines show the direction of each submovement. [Bottom row] Decomposed submovements shown in tangential
velocity

a minimum jerk angular velocity profile, but it is sufficiently close
when the gaze is not very near. The pursuit velocity of the head,
which is identical to that of the eye, is then added.

4.3 Hand Movements for Interception

With predetermined gaze behavior, the strategy of manual intercep-
tion can be modeled as a simple algorithm. When the gaze is suc-
cessfully tracking the ball, we can simply move the hand towards
the gaze. In other words, if the hand is “latched” to the eye frame
while the gaze is latched to the target, the hand will be driven suffi-
ciently close to the ball when it reaches the body. This strategy can
be observed when we try to catch a fly. Before we trigger the final
snatch, we move our hand in the same way that we move our eyes
and head.

When the hand is synchronized to the gaze, the remaining decision
will be to determine the distance of the catch. The data shown in
Fig. 8 strongly suggests that each subject has a preferred intercep-
tion distance from the head frame. This distance may be affected
by considerations such as the manipulability of the arm or the effec-
tive compliance produced by muscle properties, but for simplicity
we choose a fixed distance as a decision variable for catching.
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Figure 8: Distance from head to the interception point summarized
from 59 ball catching trials for one subject

If we draw a sphere whose radius is the preferred distance around
head, the catch position is determined as an early intersection point
between the sphere and the predicted ball trajectory. Note that this
interception planning is only valid when we have a sufficiently ac-
curate prediction of the object trajectory. For this decision, we use

the determinant of the current posterior error covariance of the state,
defined in Eq. 14, as a decision variable.

Note that a decision made too early can cause a serious mistake,
whereas one that is too late gives too little time to move. There-
fore, we empirically searched for the best decision timing and cor-
responding value of the decision variable. Interestingly, from the
simulation result, we see that in most cases a good decision is made
around the apex of the ball trajectory as illustrated in Fig. 9. This
agrees with the transition from catch-up saccades to pursuit that is
previously shown in Fig. 3, and also corresponds to the large change
of the hand trajectory observed in the data. Fig. 10 shows the cap-
tured hand trajectory for different catching trials and we can see
that a clear branch of the trajectory toward the target occurs around
the apex of the ball.
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Figure 9: Decision variables and ball apex: Lines show the de-
cision variable, the determinant of the posterior error covariance
matrix, for various catching simulations. For each trial, the time
when the ball reaches its apex is marked as a green dot. Gray dot-
ted line shows the criterion used for the prediction.

The reason why the decision is made around the apex can be intu-
itively understood: since the velocity of the ball reaches its mini-
mum at the apex and the gaze usually catches up with the ball by
saccades and start to pursue, the quality of the position and velocity
estimation is considerably improved around the apex. This corre-
sponds to the fact skilled jugglers only look at the juggled balls at
their apex [Beek and Lewbel 1995].
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Figure 10: Transition of the hand trajectory around the apex (from
real data). The subject’s pose corresponds to the ball apex. Red
curves show the entire hand trajectories. It can clearly be seen that
significant modification of the trajectory occurs around the apex.

Based on this hypothesis, we divide the interception strategy into
two parts: a reactive phase and a proactive phase, similar to Wood-
worth’s two component model. The strategies for composing sub-
movements for each phase are as follows:

Reactive Phase. A submovement to drive the hand to the gaze
direction with preferred catching distance is generated. The desti-
nation of the submovement is not exactly set to the gaze center to
avoid the occlusion of the target due to the hand. For a right-handed
subject, the destination is set to be the 45 degrees lower right point
with respect to the gaze that corresponds to the captured configura-
tion in Fig. 10. We name this position as the ready pose, pready ,
that is fixed with respect to the eye frame.

If Re and pe are the orientation and position of the eye frame,
and p̃m is the destination of the previous submovement, direction
vector b in Eq. 16 can be determined as follows:

b = Repready + pe − p̃m (19)

We limit the maximum velocity to 2m/s as observed in the data.
We also assume from the data that the duration of the submovement
is approximately 400 ms so that it reaches the maximum velocity
when the next submovement is triggered. This is consistent with
the observation of Novak et al. [2002].

Proactive Phase. When the subject has a sufficiently accurate pre-
diction of the ball trajectory, the observed ball position and veloc-
ity can be extrapolated into the future to determine the intercep-
tion point. Here we limit the prediction to a specific time window,
400 ms, that reflects the prediction limit of the internal model.
When the ball penetrates the sphere of the preferred distance, the
interception point and remaining time is determined and a corre-
sponding submovement is generated. Otherwise, the hand goes in
the direction of the closest point on the predicted trajectory with
maximum 2m/s velocity. The magnitude of the submovement is
also adjusted so that the final hand position does not exceed the
biomechanical limit of reach. Using this strategy, we can generate
the distinctive curved path of the hand trajectory observed from the
data. Fig. 11 shows the resultant hand trajectory and submove-
ments.

The orientation and grasping angle of the hand can also be deter-
mined in this phase by applying a relationship observed in the data.
From the data, we observe that the angle of attack between the ball
and the palm remains at 90 degrees and grasping starts with the last
submovement, when the decision to catch is made.
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Figure 11: Submovement composition of the hand trajectory for
a given ball trajectory (black curve). Left: Circles show the per-
ceived position of the ball over time. The simulated hand trajectory
(orange curve) is compared to the captured data (green curve). As
the catch phase changes from reactive (gray circles) to proactive
(red circles), corresponding submovements are generated. Right:
dotted lines (gray for reactive and red for proactive phase) are di-
rections and amplitudes of submovements triggered at each visuo-
motor update (numbers match to the estimated ball position on the
trajectory).

4.4 Body Movements

As previously described, we focus on generating coupled motion
between gaze, head, and hand. Body movements are not the focus
of this work as they have been extensively studied in computer an-
imation. For a given trajectory of the hand and head, we solve for
the configuration of the rest of the body using inverse kinematics
(IK). The character model used consists of a torso that is connected
to the ground by a 3 DOF rotational joint and a 7 DOF (right) arm
model. The position of the head is fixed on the torso. The input
provided to the IK algorithm consists of the position and the nor-
mal vector of the palm that is adjusted to satisfy the preferred angle
of attack between the ball and the hand.

Although general treatment for IK is not our main focus, its solu-
tion is not trivial due to kinematic redundancy, with biomechan-
ical constraints and learned styles contributing to realistic solu-
tions. We first implemented the IK solution proposed by [Gro-
chow et al. 2004], but it did not generalize well when the move-
ment approaches or crosses the boundary of the training set where
the learned movements need to be extrapolated. More recent latent
variable models [Urtasun et al. 2008; Wang et al. 2007] may fare
better, but we instead used a simpler approach of combining exam-
ple configurations with weighted pseudo-inverse of the Jacobian to
obtain our IK solution (for all 3+7 DOF).

Our approach first solves for the torso and arm joint angles accord-
ing to the specified hand position, we then solve for the relative
hand orientation according to the ball velocity. To solve for the
torso and arm configuration, we first search in our training set (de-
rived from motion capture data) for configurations with hand posi-
tion most similar to the target position. The average of these con-
figurations is then blended with the previous timestep configuration
and a weighted pseudo-inverse of the Jacobian is used to correct the
resulting configuration so that its hand position matches the target.
During the reactive phase, the rotation of the hand is interpolated
from its home orientation to a predetermined ready pose orienta-
tion with a set velocity. Subsequently, in the proactive phase, we
find the rotation that gives the nearest interpolation from the pre-
vious palm normal vector to the estimated ball velocity vector and
apply it to the hand. Finally, we use a canned animation to generate
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Figure 12: Simulated gaze behavior for a given ball trajectory.
Colors and data rates are the same as Fig. 3.

Figure 13: Comparison between real (green) and simulated (red)
hand trajectories for the same ball catching tasks. Submovements
vectors are plotted as a gray dotted lines. Note that in the bottom
right trials, the simulated character failed to catch the ball since it
is subjected to a very extreme condition.

the finger grasping motion during the final moments of interception.

5 Results

Using the proposed methods, we developed a fully generative 3D
character animation model of the ball catching, shown in Fig. 1 and
the accompanying video.

Validation. We compared the results of our simulation to measure-
ments of human catching, to see if there is a qualitative agreement.
Note that the measurements were not used for estimating the param-
eters of the model, so qualitative agreement is the best one can ex-
pect. We recorded the movement of upper body using an 8-camera
Vicon MX motion capture system (Vicon, Los Angeles), and eye
movements using a head mounted C-ETD eyetracker (Chronos Vi-
sion, Berlin) to capture the head-unrestrained eye movements. Both
systems recorded at 100 Hz, which was sufficient for our needs.
Subjects were seated on a comfortable stool and instructed to catch
a 5cm diameter ball thrown in the subject’s direction. The gaze be-
havior for different ball trajectories was previously shown in Fig. 3.
The simulated data generated using our system is shown in Fig. 12
and looks qualitatively similar. Comparison of measured and simu-
lated hand trajectories in Fig. 13 shows that the proposed algorithm
is sufficient to generate qualitative details of real hand movement
as well.

Generalization. We simulated ball catching for many different tra-
jectories. The character is able to catch the ball successfully in 98
percent of the trials. To test the model capability to generalize be-
yond simple trials, we introduce several variations in the catching

scenario. In one scenario, we assume that the ball unexpectedly
bounces off a transparent wall. We found that the Kalman filter
with adaptive resetting successfully tracks the ball after the bounce.
The character often fails to catch if the time to recover the predic-
tion is too short, just as humans would. In another scenario, we
simulated poor vision by increasing the standard deviation of the
error in Table 1 by a factor of 10. As expected, the resultant motion
of character showed a slow start-up followed by an abrupt catching
with an 81.2 percent success ratio.

Performance. By design, the model is very efficient. We imple-
mented the entire algorithm in MATLAB (version 7.9.0, R2009b,
MathWorks Inc.) without using externally compiled subroutines.
The software ran on a 3.40 GHz Intel Core i7 computer. The com-
putation for generating the entire catching movement, including IK,
for 100 frames, with a 1 second ball trajectory, takes 5.93 seconds
(16.9 fps).

6 Conclusions

We have proposed a framework of animating visually guided in-
terception based on the neurophysiology of the visuomotor system.
The framework includes novel features such as gaze based motor
coordination and submovement composition, that have not been
previously introduced in computer animation. Since the model is
grounded in human behavior, the simulated catching movements
look very human-like. Interestingly, we found that the use of sub-
movements produces very subtle behaviors such as discontinuities
and hesitation, which are clearly different from continuous, robotic
motions.

Our framework currently has several limitations. These are mostly
due to this paper’s focus on constructing a complete and practical
generative model for computer animation, which required simpli-
fying many of the known complexities of the human sensorimotor
system. First, our vision model is a highly simplified approxima-
tion of the human visual system. Our linear Kalman filter could
be improved using more sophisticated (and complex) Bayesian fil-
ters. Although a visuomotor update interval of about 200 ms is
observed in both our data and in previous studies, it is likely that
there is some variability as a result of a probabilistic decision pro-
cess. A more accurate model of this decision process may be able
to account for the variability. In general, it may also be desirable
to model context-dependent and individual variability in the coor-
dination pattern. Finally, we currently rely on kinematic control,
but it is clear that a dynamic model, based on realistic biomechan-
ics and neural control (e.g., [Sueda et al. 2008; Lee et al. 2009]),
may be able to better account for movements at the limits of human
performance.

Notwithstanding the limitations listed above, we believe our frame-
work provides a new approach to computer animation, based on
principles that may be used by the human brain to control move-
ment, such as visual motion estimation, use of gaze to control
body movements, and generating movements using overlapping
submovements. Since we base our animations on these principles,
rather than on a corpus of raw data, the method is very efficient and
generalizes in plausible ways to novel scenarios.
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